
C E  6 0 1 3 0  F I N I T E  E L E M E N T  M E T H O D S -  L E C T U R E  5  -  u p d a t e d  2 0 1 8 - 0 1 - 2 5       P a g e  1 | 22 

Lecture No. 5 

𝐿𝐿(𝑢𝑢) − 𝑝𝑝(𝑥𝑥) = 0 in  𝛺𝛺 

𝑆𝑆𝐸𝐸(𝑢𝑢) = 𝑔𝑔𝐸𝐸 on 𝛤𝛤𝐸𝐸 

𝑆𝑆𝑁𝑁(𝑢𝑢) = 𝑔𝑔𝑁𝑁 on 𝛤𝛤𝑁𝑁 

• For all weighted residual methods 

𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑢𝑢𝐵𝐵 + �𝛼𝛼𝑖𝑖𝜙𝜙𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 

• For all (Bubnov) Galerkin methods 

𝑤𝑤𝑖𝑖 = 𝜙𝜙𝑖𝑖  (test = trial) 

 

Summary of Conventional Galerkin Method 

𝑆𝑆𝐸𝐸(𝑢𝑢𝐵𝐵) = 𝑔𝑔𝐸𝐸  and  𝑆𝑆𝐸𝐸(𝜙𝜙𝑖𝑖) = 0,          𝑖𝑖 = 1,𝑁𝑁  on  𝛤𝛤𝐸𝐸 

𝑆𝑆𝑁𝑁(𝑢𝑢𝐵𝐵) = 𝑔𝑔𝑁𝑁  and  𝑆𝑆𝑁𝑁(𝜙𝜙𝑖𝑖) = 0,          𝑖𝑖 = 1,𝑁𝑁  on  𝛤𝛤𝑁𝑁 

Ԑ𝐼𝐼 = 𝐿𝐿�𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎� − 𝑝𝑝(𝑥𝑥) 

< Ԑ𝐼𝐼 ,𝑤𝑤𝑗𝑗 > = 0,          𝑗𝑗 = 1,𝑁𝑁 
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Fundamental Weak Weighted Residual Galerkin 

• Only satisfy the essential b.c.’s. This makes things a lot easier! 

𝑆𝑆𝐸𝐸(𝑢𝑢𝐵𝐵) = 𝑔𝑔𝐸𝐸  and  𝑆𝑆𝐸𝐸(𝜙𝜙𝑖𝑖) = 0          𝑖𝑖 = 1,𝑁𝑁  on  𝛤𝛤𝐸𝐸 

• Only require a limited degree of functional continuity. Therefore we can piece together 

functions to make up 𝜙𝜙𝑖𝑖. Again this makes the problem much easier. 

• Since we’re not satisfying the natural b.c.’s, we also consider the error associated with the 

locations where the natural b.c.’s is violated: 

Ԑ𝐼𝐼 = 𝐿𝐿�𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎� − 𝑝𝑝(𝑥𝑥) 

Ԑ𝐵𝐵,𝑁𝑁 = −𝑆𝑆𝑁𝑁�𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎� + 𝑔𝑔𝑁𝑁 

< Ԑ𝐼𝐼 ,𝑤𝑤𝑗𝑗 >  +< Ԑ𝐵𝐵,𝑁𝑁 ,𝑤𝑤𝑗𝑗 > = 0     𝑗𝑗 = 1,𝑁𝑁 

This establishes the fundamental weak form. Thus we have relaxed the admissibility 

conditions such that only “essential” b.c.’s  must be satisfied. 

• The Interior and Boundary Error (for the natural boundary) must go to zero by requiring 𝑤𝑤𝑗𝑗 

to the orthogonal to these combined errors. Hence we are no longer “clamping” the natural 

b.c. down at the time we set up our sequence but we are “driving” the natural b.c. error to 

zero as the number of trial functions increases. 
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• Expanding out the fundamental weak form by substituting Ԑ𝐼𝐼 , Ԑ𝐵𝐵,𝑁𝑁 and 𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎. 

 

< 𝐿𝐿(𝑢𝑢𝐵𝐵) − 𝑝𝑝,𝑤𝑤𝑗𝑗 >  +�𝛼𝛼𝑖𝑖 < 𝐿𝐿(𝜙𝜙𝑖𝑖),
𝑁𝑁

𝑖𝑖=1

𝑤𝑤𝑗𝑗 >𝛺𝛺 +< 𝑔𝑔𝑁𝑁 − 𝑆𝑆𝑁𝑁(𝑢𝑢𝐵𝐵),𝑤𝑤𝑗𝑗 >𝛤𝛤𝑁𝑁  

−�𝛼𝛼𝑖𝑖 <
𝑁𝑁

𝑖𝑖=1

𝑆𝑆𝑁𝑁(𝜙𝜙𝑖𝑖),𝑤𝑤𝑗𝑗 >𝛤𝛤𝑁𝑁= 0          𝑗𝑗 = 1,𝑁𝑁 
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Symmetrical Weak Weighted Residual Form 

• Let’s continue to relax admissibility by integrating the fundamental weak form by parts. 

The “halfway point” of the integration represents the symmetrical weak form”. 

• This integration by parts procedure: 

• Reduces the required functional continuity on the approximating functions. It reduces 

functional continuity requirements on the trial functions while increasing them on the 

test functions. At the symmetrical weak form these requirements are balanced. Thus 

this is the optimal weak form. 

• Furthermore the unknown functions evaluated at the boundary disappear. 

• In general the natural b.c. is only satisfied in an average sense of  𝑁𝑁 → ∞. 

• When the operator is self-adjoint, the matrix generated will still be symmetrical for both the 

symmetrical and fundamental weak forms. 
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Definition and Use of Localized Functions 

• Split the domain up into segments over which trial/test functions are defined.  

Motivation, it’s easier to satisfy b.c.’s for complex 2D/3D geometries since these can be 

satisfied locally (for weak formulations we need only satisfy the essential b.c.’s). In addition 

the matrix properties will in general be much better. 

• For the finite element method (FEM), we use functions defined over small subdomains, i.e. 

localized functions. 

• However we must ensure that we satisfy the correct degree of functional continuity. For 

example, consider: 

𝐿𝐿(𝑢𝑢) =
𝑑𝑑2𝑢𝑢
𝑑𝑑𝑥𝑥2 

𝑊𝑊(2) space is required for fundamental weak form (continuity of the function and the first 

derivative and a finite second derivative). 

𝑊𝑊(1) space is required for the symmetrical weak form (continuity of the function and a 

finite first derivative). 

• Split the domain up into segments and define trial functions within each element. 
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Option 1 

No functional continuity but finite function  → 𝑊𝑊(0) space 

(a) The simplest approximation is a histogram (i.e. constant value of the function over the 

element). This defines only one unknown per “finite element”. 
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(b) We can define more complex functions over the element leading to more unknowns per 

element (to represent an increased order of polynomial or function within the element). 

However we still have no functional continuity between the elements and thus these 

functions still are from the  𝑊𝑊(0) space. 
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Option 2 

The function is continuous which defines the 𝑊𝑊(1) = 𝐶𝐶𝑜𝑜 space. This space requires no 

continuity of the derivative. We define the discrete variables equal to the functional values at 

the nodes. Nodes must always join up at the inter element boundaries! 

(a) The simplest approximation consists of a linear approximation over each element 

which involves 2 unknowns per element and 1 unknown per node: Thus over each 

element: 

𝑢𝑢 = 𝑐𝑐𝑜𝑜 + 𝑐𝑐1𝑥𝑥 

 

 

 

 

Thus we’ve gone from an element measure to a nodal measure. 

An interpolating function defined with nodal functional values and  𝑊𝑊(1) = 𝐶𝐶𝑜𝑜 continuity is 
called a Lagrange interpolating function. 
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(b) We can use higher degree functions within each element (i.e. more nodes per element) 

however functional continuity will still only be  𝑊𝑊(1). For example: 

𝑢𝑢 = 𝑐𝑐𝑜𝑜 + 𝑐𝑐1𝑥𝑥 + 𝑐𝑐2𝑥𝑥2 + 𝑐𝑐3𝑥𝑥3 
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Option 3 

The function and first derivative continuous defines the  𝑊𝑊(2) = 𝐶𝐶1 space. In this case we 

must define the function and the first derivative as nodal variables. 

(a) Simplest approximation involves 2 nodes with 2 unknowns per node. Thus over each 

element: 

𝑢𝑢 = 𝑐𝑐𝑜𝑜 + 𝑐𝑐1𝑥𝑥 + 𝑐𝑐2𝑥𝑥2 + 𝑐𝑐3𝑥𝑥3 

 

 

 

 

 

 

Therefore u and 𝑢𝑢,𝑥𝑥 are the unknowns. This involves 4 unknowns per element, 2 unknowns 

per node.  

Interpolating functions defined with nodal functional and first derivative values with 

𝑊𝑊(2) = 𝐶𝐶1 continuity are called Hermite Interpolating functions. 
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1st order Hermite: 𝑢𝑢 and 𝑢𝑢,𝑥𝑥 continuous 

2nd order Hermite: 𝑢𝑢, 𝑢𝑢,𝑥𝑥 and 𝑢𝑢,𝑥𝑥𝑥𝑥 continuous → 3 unknowns per node 

 

Note 1 

For the Galerkin method, 𝑤𝑤𝑗𝑗 = 𝜙𝜙𝑗𝑗 

• The fundamental weak form requires different order functional continuity for 𝜙𝜙𝑗𝑗 as 

trial functions than the 𝑤𝑤𝑗𝑗 (or 𝜙𝜙𝑗𝑗 as test) functions. 

• The symmetrical weak form is obtained by integration by parts until the space 

requirements for 𝜙𝜙𝑗𝑗 and 𝑤𝑤𝑗𝑗 are the same. This is the most attractive form to use. We 

note that the number of unknowns has been minimized. 
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Example 

• Fundamental weak form: 

��
𝑑𝑑2𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎
𝑑𝑑𝑥𝑥2 + 𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑥𝑥�𝑤𝑤𝑗𝑗𝑑𝑑𝑥𝑥 + ��𝑔𝑔 −

𝑑𝑑𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎
𝑑𝑑𝑥𝑥 �𝑤𝑤𝑗𝑗�

𝑥𝑥=1
= 0    𝑗𝑗 = 1,𝑁𝑁

1

0

 

𝑤𝑤𝑗𝑗 ∈ 𝐿𝐿2 and 𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎 (or 𝜙𝜙𝑖𝑖) ∈ 𝑊𝑊(2),     𝑗𝑗 = 1,𝑁𝑁 

Therefore we must choose 𝑤𝑤𝑗𝑗 and 𝜙𝜙𝑗𝑗 ∈ 𝑊𝑊(2)  

The functional and first derivative must be continuous) leading to a cubic approximation 

over the element with 2 unknowns per node (function value and its 1st derivative). Thus we 

require Hermite interpolation 

• Symmetrical Weak Form 

��−
𝑑𝑑𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎
𝑑𝑑𝑥𝑥

𝑑𝑑𝑤𝑤𝑗𝑗
𝑑𝑑𝑥𝑥 + 𝑢𝑢𝑤𝑤𝑗𝑗 + 𝑥𝑥𝑤𝑤𝑗𝑗�𝑑𝑑𝑥𝑥 + �𝑔𝑔𝑤𝑤𝑗𝑗�𝑥𝑥=1 = 0

1

0

       𝑗𝑗 = 1,𝑁𝑁 
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• The opposite of the fundamental weak form is obtained by interchanging 𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑤𝑤𝑗𝑗 and 

leads to the B.E.M form 

�
𝑑𝑑𝑤𝑤𝑗𝑗
𝑑𝑑𝑥𝑥 𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎�

0

1

+ �𝑔𝑔𝑤𝑤𝑗𝑗�𝑥𝑥=1 + ��𝑢𝑢𝑤𝑤𝑗𝑗 + 𝑥𝑥𝑤𝑤𝑗𝑗 + 𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎
𝑑𝑑2𝑤𝑤𝑗𝑗
𝑑𝑑𝑥𝑥2 � 𝑑𝑑𝑥𝑥 = 0

1

0

      𝑗𝑗 = 1,𝑁𝑁 

Now 𝑤𝑤𝑗𝑗 ∈ 𝑊𝑊(2) and 𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎 (or 𝜙𝜙𝑗𝑗) ∈ 𝐿𝐿2 
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Note 2 

Alternative strategy for deriving the symmetrical weak form: 

• Start with standard Galerkin formulation 

• Integrate by parts 

• Substitute in for the specified natural b.c. 

Example 

• Standard Galerkin formulation 

��
𝑑𝑑2𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎
𝑑𝑑𝑥𝑥2 + 𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑥𝑥�𝑤𝑤𝑗𝑗𝑑𝑑𝑥𝑥 = 0

1

0

 

 

• Integrate by parts: 

��−
𝑑𝑑𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎
𝑑𝑑𝑥𝑥

𝑑𝑑𝑤𝑤𝑗𝑗
𝑑𝑑𝑥𝑥 + 𝑢𝑢𝑤𝑤𝑗𝑗 + 𝑥𝑥𝑤𝑤𝑗𝑗� 𝑑𝑑𝑥𝑥 + �

𝑑𝑑𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎
𝑑𝑑𝑥𝑥 𝑤𝑤𝑗𝑗�

𝑥𝑥=0

𝑥𝑥=1

= 0
1

0

 

⇒ 

��−
𝑑𝑑𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎
𝑑𝑑𝑥𝑥

𝑑𝑑𝑤𝑤𝑗𝑗
𝑑𝑑𝑥𝑥 + 𝑢𝑢𝑤𝑤𝑗𝑗 + 𝑥𝑥𝑤𝑤𝑗𝑗� 𝑑𝑑𝑥𝑥 + �

𝑑𝑑𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎
𝑑𝑑𝑥𝑥 𝑤𝑤𝑗𝑗�

𝑥𝑥=1
− �

𝑑𝑑𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎
𝑑𝑑𝑥𝑥 𝑤𝑤𝑗𝑗�

𝑥𝑥=0
= 0

1

0
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• However for our example case: 

𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎
𝑑𝑑𝑥𝑥

�
𝑥𝑥=1

≅ 𝑔𝑔          (specified natural b.c.) 

• Substituting the above equation as well as 𝑤𝑤𝑗𝑗�𝑥𝑥=0 = 0 (since 𝜙𝜙𝑗𝑗 satisfies the 

homogeneous form of the essential b.c.), leads to: 

��
𝑑𝑑𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎
𝑑𝑑𝑥𝑥

𝑑𝑑𝑤𝑤𝑗𝑗
𝑑𝑑𝑥𝑥 + 𝑢𝑢𝑤𝑤𝑗𝑗 + 𝑥𝑥𝑤𝑤𝑗𝑗� 𝑑𝑑𝑥𝑥 + �𝑔𝑔𝑤𝑤𝑗𝑗�𝑥𝑥=1 = 0

1

0
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Note 3 

For collocation we cannot use an integration by parts procedure to lower the required degree 

of functional continuity as we could for Galerkin methods. This is due to the form of the 

weighting functions, 𝑤𝑤𝑗𝑗 = 𝛿𝛿�𝑥𝑥 − 𝑥𝑥𝑗𝑗� (the dirac delta function) which is not differentiable.  

𝑑𝑑𝛿𝛿�𝑥𝑥 − 𝑥𝑥𝑗𝑗�
𝑑𝑑𝑥𝑥  

does not exist. Therefore it is not possible to find any weak forms!  

Therefore for a 2nd order differential operator 𝐿𝐿 we must use Hermite type interpolation 

compared to the Galerkin Symmetrical weak form for which we only needed Lagrange type 

interpolation. 
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Note 4 

• Summary of Advantages of Weak Forms: 

• Fundamental weak form has relaxed b.c. requirements. It’s much easier to find trial/test 

functions which satisfy the homogeneous form of the essential b.c. than both the essential 

and natural b.c.’s 

• In addition when we define local trial functions on finite elements, it will be much 

simpler to satisfy the essential b.c.’s locally on the element level rather than on a global 

level. 

When using the FE method where we simply go into the matrix and set the essential b.c. 

u and we need not worry about “strictly” enforcing the natural boundary condition 𝑑𝑑𝑢𝑢/𝑑𝑑𝑥𝑥 

• Symmetrical weak form has relaxed functional continuity requirements. This is very 

important when defining functions over split domains (FE method).  

The symmetrical weak form lowers the inter-element functional continuity requirements 

and thus lowers the number of unknowns.  

• In addition, part of the natural b.c. error falls out due to the way in which it was defined. 
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Notes on a 4th derivative operator problem 

Consider the equilibrium equation for a beam on an elastic foundation 

𝐸𝐸𝐸𝐸
𝑑𝑑4𝑣𝑣
𝑑𝑑𝑥𝑥4 + 𝑘𝑘𝑣𝑣 = 𝑝𝑝(𝑥𝑥) 

where 

v = beam displacement 

E = modulus of elasticity 

I = moment of inertia 

k = foundation constant 

p = distributed load on the beam 
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Standard Galerkin 

〈𝐿𝐿(𝑣𝑣) − 𝑝𝑝, 𝛿𝛿𝑣𝑣〉 = 0 

⇒ 

��𝐸𝐸𝐸𝐸
𝑑𝑑4𝑣𝑣
𝑑𝑑𝑥𝑥4

+ 𝑘𝑘𝑣𝑣 − 𝑝𝑝�𝛿𝛿𝑣𝑣𝑑𝑑𝑥𝑥 = 0
𝑙𝑙

0

 

• We can establish what the essential and natural b.c.’s are by using the integration by parts 

procedure to find: 

〈𝐿𝐿(𝑣𝑣), 𝛿𝛿𝑣𝑣〉 = 〈𝐿𝐿∗(𝛿𝛿𝑣𝑣), 𝑣𝑣〉 + 

� [𝐹𝐹1(𝛿𝛿𝑣𝑣)𝐺𝐺1(𝑣𝑣) + 𝐹𝐹2(𝛿𝛿𝑣𝑣)𝐺𝐺2(𝑣𝑣) − 𝐹𝐹1(𝑣𝑣)𝐺𝐺∗1(𝛿𝛿𝑣𝑣) − 𝐹𝐹2(𝑣𝑣)𝐺𝐺∗2(𝛿𝛿𝑣𝑣)]𝑑𝑑𝛤𝛤 

• We perform 2 integration by parts to find the bc’s (assuming EI constant): 

〈𝐿𝐿(𝑣𝑣), 𝛿𝛿𝑣𝑣〉 = ��𝐸𝐸𝐸𝐸
𝑑𝑑2𝑣𝑣
𝑑𝑑𝑥𝑥2

𝑑𝑑2𝛿𝛿𝑣𝑣
𝑑𝑑𝑥𝑥2 + 𝑘𝑘𝑣𝑣𝛿𝛿𝑣𝑣�𝑑𝑑𝑥𝑥

𝑙𝑙

0

+ �−𝐸𝐸𝐸𝐸
𝑑𝑑2𝑣𝑣
𝑑𝑑𝑥𝑥2

𝑑𝑑𝛿𝛿𝑣𝑣
𝑑𝑑𝑥𝑥 + 𝐸𝐸𝐸𝐸

𝑑𝑑3𝑣𝑣
𝑑𝑑𝑥𝑥3 𝛿𝛿𝑣𝑣�𝑥𝑥=0

𝑥𝑥=1
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• This is halfway point of the integration by parts procedure and represent the symmetrical 

weak form: 

• Hence the essential b.c.’ are:   𝐹𝐹1(𝑣𝑣) = 𝑣𝑣 → displacement 

               𝐹𝐹2(𝑣𝑣) = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥
→  slope 

• the natural b.c.’s are:    𝐺𝐺1(𝑣𝑣) =  −𝐸𝐸𝐸𝐸 𝑑𝑑
3𝑑𝑑

𝑑𝑑𝑥𝑥3
= 𝑄𝑄 → applied shear 

                𝐺𝐺2(𝑣𝑣) = +𝐸𝐸𝐸𝐸 𝑑𝑑
2𝑑𝑑

𝑑𝑑𝑥𝑥2
= 𝑀𝑀 → applied moment 

• Note that the weighting functions that are to be used in establishing the fundamental 

weak form fall out of this integration by parts procedure used in establishing self-

adjointness of the operator (which also establishes b.c.’s). You want terms to drop later 

on! 
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• Natural boundary errors 

 The error in the moment is: 

Ԑ𝐵𝐵′ = �𝐸𝐸𝐸𝐸
𝑑𝑑2𝑣𝑣
𝑑𝑑𝑥𝑥2 − 𝑀𝑀� �

𝑑𝑑𝛿𝛿𝑣𝑣
𝑑𝑑𝑥𝑥

� 

 A error in the shear is: 

Ԑ𝐵𝐵" = �−𝐸𝐸𝐸𝐸
𝑑𝑑3𝑣𝑣
𝑑𝑑𝑥𝑥3 − 𝑄𝑄� {𝛿𝛿𝑣𝑣} 

• Weighted natural boundary errors 

 A moment error is weighted by a rotation: 

〈Ԑ𝐵𝐵′ ,
𝑑𝑑𝛿𝛿𝑣𝑣
𝑑𝑑𝑥𝑥

〉 = � �𝐸𝐸𝐸𝐸
𝑑𝑑2𝑣𝑣
𝑑𝑑𝑥𝑥2 − 𝑀𝑀�

Γ𝑁𝑁

�
𝑑𝑑𝛿𝛿𝑣𝑣
𝑑𝑑𝑥𝑥 � 𝑑𝑑Γ 

 A shear error is weighted by a displacement 

〈Ԑ𝐵𝐵" , 𝛿𝛿𝑣𝑣〉 = � �−𝐸𝐸𝐸𝐸
𝑑𝑑3𝑣𝑣
𝑑𝑑𝑥𝑥3 − 𝑄𝑄�

Γ𝑁𝑁

{𝛿𝛿𝑣𝑣} 𝑑𝑑Γ 
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• Note that we must specify essential b.c.’s somewhere!  

• Boundary conditions must be specified in pairs for this problem 

• Displacement and rotation are paired 

• Shear and moment are paired 

• The error/weighting products fall out of the integration by parts process. They are also 

dimensionally consistent with all terms in the total error equation.  

• The total error equation for this problem is the fundamental weak form 

〈Ԑ𝐼𝐼 , 𝛿𝛿𝑣𝑣〉 + 〈Ԑ𝐵𝐵′ ,
𝑑𝑑𝛿𝛿𝑣𝑣
𝑑𝑑𝑥𝑥

〉 + 〈Ԑ𝐵𝐵" , 𝛿𝛿𝑣𝑣〉 = 0 

where 

Ԑ𝐼𝐼 = 𝐸𝐸𝐸𝐸
𝑑𝑑4𝑣𝑣
𝑑𝑑𝑥𝑥4 + 𝑘𝑘𝑣𝑣 − 𝑝𝑝 

• The symmetrical weak form is established by integrating the fundamental weak form by 

parts. 


